
Secondhand Smoke from Marijuana: The Return of a Familiar Problem

Matthew L. Springer, Ph.D. Professor of Medicine, UCSF

Xiaoyin Wang
Jiangtao Liu
Ronak Derakhshandeh
Pooneh Nabavizadeh Rafsanjani
Leila Mohammadi
Jess Rodriguez
Rich Sievers
Sharina Ibrahim
Caroline Gilchrist

Suzaynn Schick Peter Ganz Stanton Glantz

Shilpa Narayan
Kranthi Pinnamaneni
Christian Heiss
Robert Su
Eric Nordsieck
Qiumei Chen
Rikki Sharma
Amanda Selchau
Stanley Ye
Stephenie Le
Emmy Luu
Olivia Danforth
Gus Guttierez
Kirstin Aschbacher

Flight Attendant Medical Research Institute, NIH/NIDA, Elfenworks Foundation, CA Tobacco-Related Disease Research Program

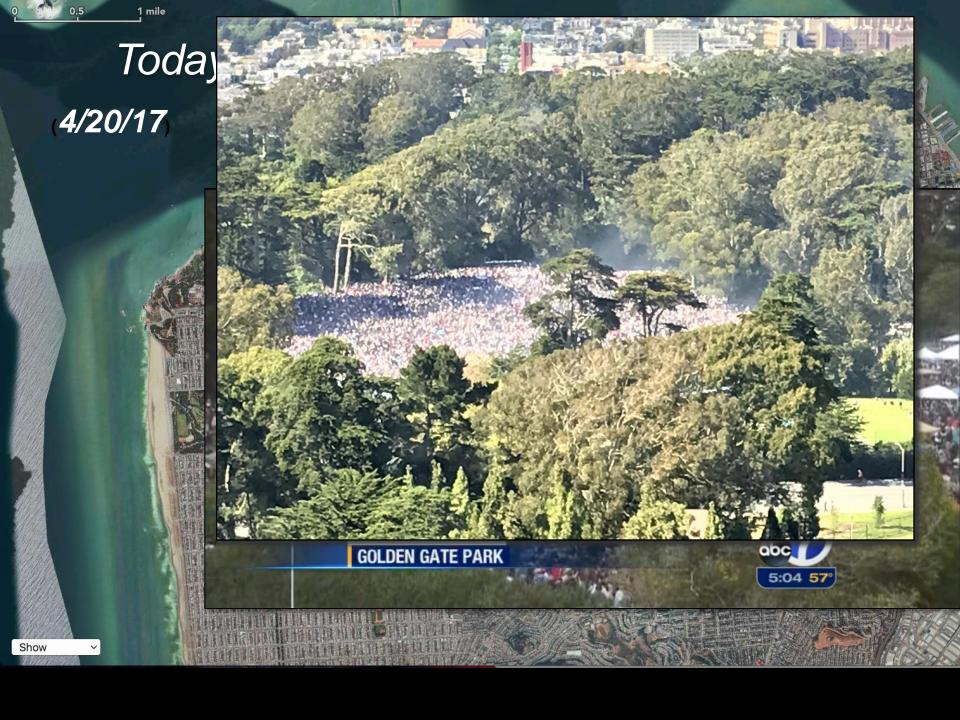
The Bad Ol' Days

The Bad Ol' Days

Typical day in 2016

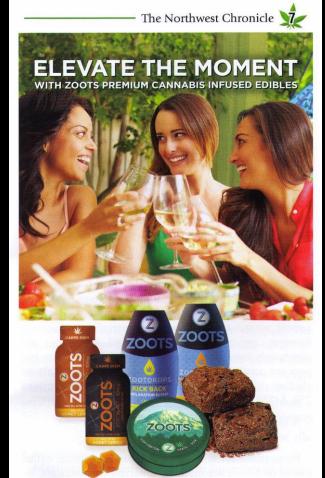
NEWS

SPORTS


BUSINESS

Back to the Future: CA, 2017?

Photo: Brennan Linsley / Associated Press


"Partygoers dance and smoke pot April 19, the first of two days of the annual 4/20 marijuana festival in Denver. The 4/20 event was the first one since Colorado legalized recreational marijuana in January."

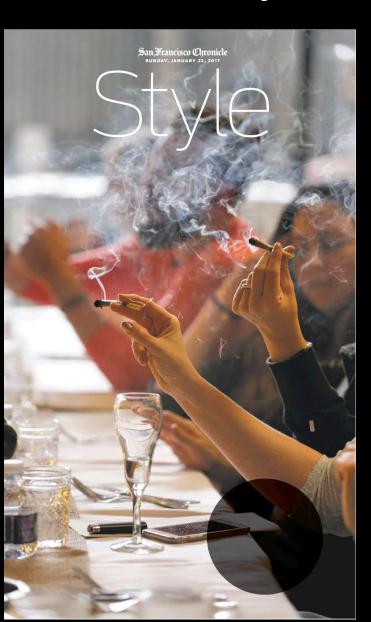
Already: WA, 2015 ... really!

WE ARE THE NEW AMERICANA
HIGH ON LEGAL MARIJUANA
RAISED ON BIGGIE AND NIRVANA
WE ARE THE NEW AMERICANA

Elevate the moment with Washington's top selling marijuana infused edibles. You can trust Zoots to blend our proprietary Cypress™ extract with all natural ingredients to assure a controlled, consistent and pleasantly elevated experience every time.

ZOOTS

PREMIUM CANNABIS INFUSIONS



Find a local retailer at www.zootology.com/store-finder

Warning: This product has intoxicating effects and may be habit forming. Marijuana can impair concentration, coordination, and judgment. Do not operate a vehicle or machinery under the influence of this drug. There may be health risks associated with consumption of this product. For use only by adults 21 and older. Keep out of the reach of children.

Already: SF, 2017... REALLY!!!

"NOW SERVING CANNABIS FOR BRUNCH

In S.F., gourmet fare infused with artisanal weed offers medicated spreads to new connoisseurs"

— SF Chronicle 1/22/17

Secondhand smoke (SHS)

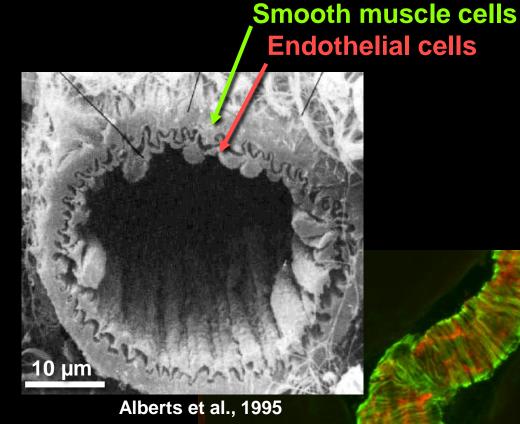
- Smoking causes over 140,000 cardiovascular deaths in the US per year
- Secondhand smoke is estimated to cause ~50,000 US deaths/year, mostly from cardiovascular disease
- Smoking bans in public places lead to reduction in frequency of heart attacks

Secondhand smoke (SHS)

Longterm secondhand smoke exposure impairs *vascular* endothelial function

"blood vessel function"

Tobacco secondhand smoke exposure impairs ability of arteries to *vasodilate* when they need to pass more blood


(Vasodilation: Arteries grow in diameter when necessary)

Important: Impairment is temporary, but repeated exposures lead to long-term impairment

Measuring Endothelial Function

- Principle of Flow-Mediated Dilation (FMD) -

Ischemic dilation of downstream vessels Flow in artery ↑ Shear stress on endothelium 1 Nitric oxide ↑

Flow-mediated vasodilation

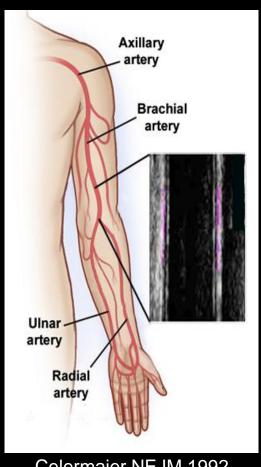
Springer et al., 2003

Brachial artery FMD gets lower with increasing cardiovascular risk factors

Dilation of coronary arteries in response to increased coronary blood flow gets lower with increasing cardiovascular risk factors

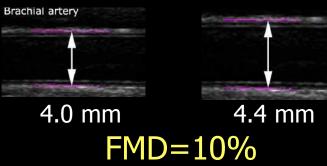
(Nabel, Selwyn, and Ganz, 1990)

Improves FMD:


Dark chocolate, green tea, red wine, etc.

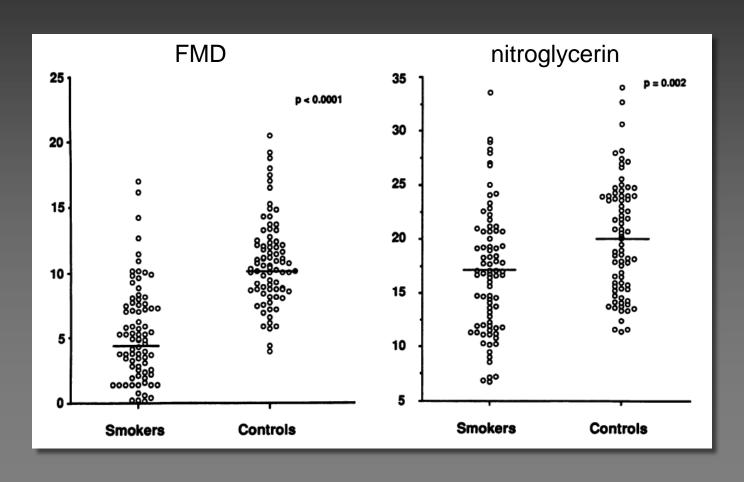
Impairs FMD:

Age, smoking, secondhand smoke, etc.


Measuring Endothelial Function

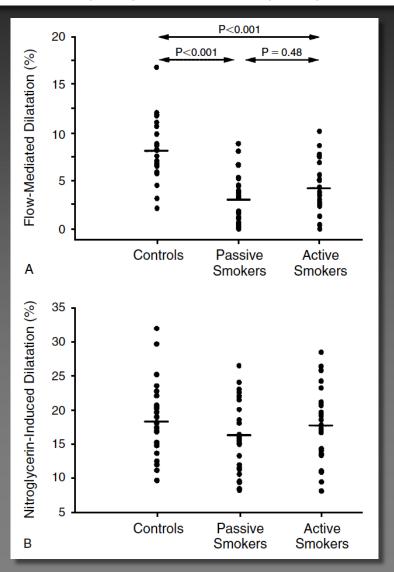
"Flow-Mediated Dilation" (FMD)

Celermajer NEJM 1992



Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults

DS Celermajer, KE Sorensen, D Georgakopoulos, C Bull, O Thomas, J Robinson and JE Deanfield


Circulation 1993;88;2149-2155

...that is, smoking impairs FMD

PASSIVE SMOKING AND IMPAIRED ENDOTHELIUM-DEPENDENT ARTERIAL DILATATION IN HEALTHY YOUNG ADULTS

DAVID S. CELERMAJER, Ph.D., MARK R. ADAMS, M.B., B.S., PETER CLARKSON, M.B., B.S., JACQUI ROBINSON, R.N., ROBYN McCredie, B.Sc., Ann Donald, and John E. Deanfield, M.B., Ch.B.

Several years of secondhand smoke exposure impairs FMD

Brief Secondhand Smoke Exposure Depresses Endothelial Progenitor Cells Activity and Endothelial Function

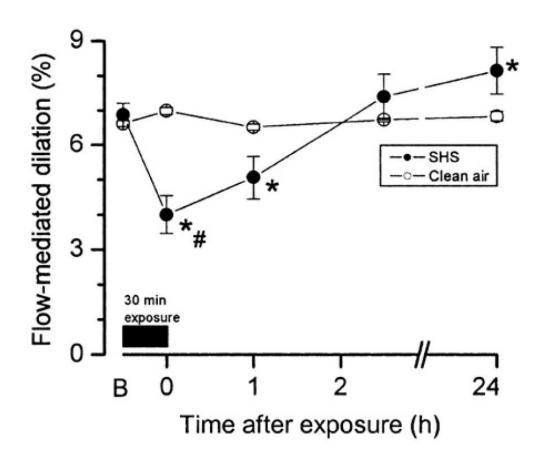
Sustained Vascular Injury and Blunted Nitric Oxide Production

Christian Heiss, MD, DR MED,* Nicolas Amabile, MD,* Andrew C. Lee, MD,* Wendy May Real, BS,* Suzaynn F. Schick, PhD,† David Lao, MD,* Maelene L. Wong, BS,* Sarah Jahn, MB,*

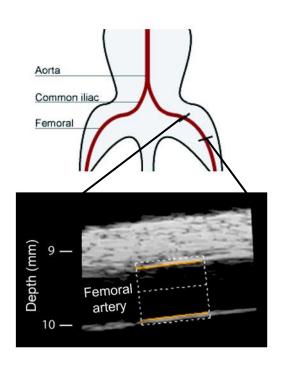
Franca S. Angeli, MD,* Petros Minasi, BA,* Matthew L. Springer, PHD,*

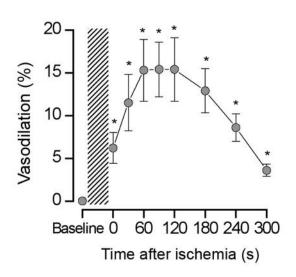
S. Katharine Hammond, PhD,‡ Stanton A. Glantz, PhD, FACC,* William Grossman, MD, FACC,*

John R. Balmes, MD, *† Yerem Yeghiazarians, MD, FACC*

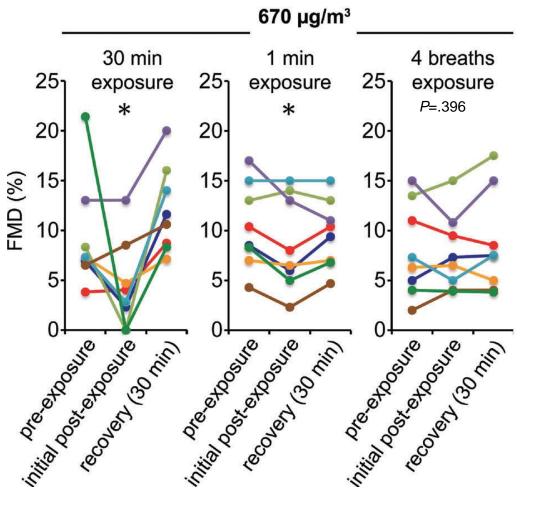

San Francisco and Berkeley, California

Christian Heiss


30 min SHS exposure impairs FMD


 $376 \pm 43 \mu g/m^3$ RSP, constant sidestream smoke

Heiss et al., 2008 Bars = SEM


FMD measured in rat hindlimb using micro-ultrasound

1 minute of secondhand smoke (tobacco) exposure was enough to impair vascular endothelial function

n=8 for all groups

*P<.01 impairment vs. mean of pre-exposure and recovery

Pinnamaneni et al., 2014, Nicotine Tob. Res. 16:584-590

Nicotine & Tobacco Research, Volume 16, Number 5 (May 2014) 584–590

ORIGINAL INVESTIGATION

Brief Exposure to Secondhand Smoke Reversibly Impairs Endothelial Vasodilatory Function

Kranthi Pinnamaneni MD¹, Richard E. Sievers BS², Rikki Sharma BS², Amanda M. Selchau BS², Gustavo Gutierrez AS³, Eric J. Nordsieck MD², Robert Su MD², Songtao An MD, PhD¹, Qiumei Chen MD, PhD¹, Xiaoyin Wang MD¹, Ronak Derakhshandeh MS², Kirstin Aschbacher PhD⁴, Christian Heiss MD, Dr med², Stanton A. Glantz PhD^{1,2}, Suzaynn F. Schick PhD⁵, Matthew L. Springer PhD^{1,2,6}

It's not enough simply to minimize public exposure to secondhand smoke; it's important to prevent exposure

Impairment of Endothelial Function by Little Cigar Secondhand Smoke

Jiangtao Liu, MD Xiaoyin Wang, MD Shilpa Narayan, BS Stanton A. Glantz, PhD Suzaynn F. Schick, PhD Matthew L. Springer, PhD

Tobacco Regulatory Science. 2016;2(1):56-63

Jiangtao Liu

"Smokewar" by Rui Zheng, 2013 (the daughter of Xiaoyin Wang in my lab)

Problem: General public avoids tobacco SHS but many think marijuana SHS is ok

"There's no nicotine" "It's natural" "It's medicinal"

"No one said it ISN'T ok"

Table 4. Various Analytes Including Tobacco-Specific Compounds and Heavy Metals Determined in Sidestream Smoke from Tobacco and Marijuana under Two Smoking Conditions^a

	ISO		extreme		
	tobacco	marijuana	tobacco	marijuana	
tar (mg/cig)	24.3 ± 1.8	49.7 ± 2.5*	17.2 ± 1.8	30.8 ± 1.6*	
NO (ug/cig)	1101 ± 47	2087 ± 152*	1419 ± 124	$2631 \pm 241*$	
NOx (µg/cig)	1172 ± 44	2284 ± 229*	1521 ± 153	2880 ± 323*	
CO (mg/cig)	61.7 ± 2.0	$54.0 \pm 3.7*$	61.6 ± 2.9	$50.6 \pm 3.9 *$	
nicotine (mg/cig)	4.77 ± 0.26	0.065 ± 0.018 *	3.11 ± 0.23	0.074 ± 0.029*	
ammonia (µg/cig)	5568 ± 322	14270 ± 472*	3919 ± 327	10743 ± 675*	
HCN (µg/cig)	83.8 ± 7.8	685 ± 29*	103 ± 10	678 ± 72*	
NNN	41 ± 4.8	< 0.634*	28 ± 2.0	0.634-2.0*	
NAT	17.4 ± 1.4	<2.34*	10.2 ± 1.1	<2.34*	
NAB	2.71 ± 0.52	<0.793*	0.79 - 2.5	< 0.793	
NNK	92 ± 11.7	<4.65*	61 ± 5.1	<4.65*	
mercury	8.32 ± 0.57	<4.40*	6.31 ± 0.61	<4.40*	
cadmium	478 ± 19	4.0-13.4*	360 ± 20	4.0-13.4*	
lead	34.5-115	<34.5	34.5-115	<34.5	
chromium	31.0 - 103	31.0-103	<31.0	31.0-103	
nickel	35.5-118	35.5-118	<35.5	<35.5	
arsenic	<11.3	<11.3	<11.3	<11.3	
selenium	<17.5	<17.5	<17.5	<17.5	

"Values are provided ± standard deviations. For tar, nicotine, and CO, n = 20. For all others, n = 7. Units are ng/cigarette unless noted differently. *P < 0.05 vs tobacco. Values shown with "<" were below the limit of detection; values shown as a range were above the limit of detection but below the limit of quantitation.

Table 5. Miscellaneous Organics Determined in Mainstream and Sidestream Smoke from Tobacco and Marijuana under Two Smoking Conditions^a

	ISO		extreme		
	tobacco	marijuana	tobacco	marijuana	
		mainstream			
pyridine	31.1 ± 1.7	34.6 ± 4.3	59 ± 4.9	$93.0 \pm 8.9*$	
quinoline	1.31 ± 0.08	$1.06 \pm 0.26 *$	2.22 ± 0.22	2.68 ± 0.34 *	
1,3-butadiene	64.8 ± 2.2	$79.5 \pm 7.4*$	124 ± 7	138 ± 17	
isoprene	286 ± 15	$74.0 \pm 6.5 *$	540 ± 18	$132 \pm 19*$	
acrylonitrile	13 ± 1.2	$36.6 \pm 4.3*$	24 ± 0.9	$66.9 \pm 9.5*$	
benzene	62.2 ± 3.5	58.3 ± 5.9	94.6 ± 2.6	$84.4 \pm 8.9*$	
toluene	103 ± 6	124 ± 15*	169 ± 3	199 ± 25*	
styrene	15 ± 0.6	$17.2 \pm 2.3*$	28.6 ± 2.0	$44.7\pm4.2^*$	
		sidestream			
pyridine	265 ± 11	$307 \pm 14*$	225 ± 9	$278 \pm 22*$	
quinoline	9.94 ± 0.92	$11.3 \pm 0.7*$	8.53 ± 0.54	9.82 ± 1.10 *	
1,3-butadiene	372 ± 12	412 ± 27*	269 ± 13	$420 \pm 22*$	
isoprene	1459 ± 82	656 ± 40*	1153 ± 51	$614 \pm 31*$	
acrylonitrile	102 ± 4	295 ± 21*	73.8 ± 4.7	273 ± 17*	
benzene	290 ± 11	341 ± 12*	203 ± 11	$328 \pm 18*$	
toluene	516 ± 20	$704 \pm 29*$	393 ± 32	$729 \pm 28*$	
styrene	105 ± 10	$162 \pm 10*$	85.2 ± 10.6	175 ± 9*	

[&]quot;Values are provided \pm standard deviations; n = 7. Units are μg cigarette. *P < 0.05 vs tobacco.

marijuana was ammonia. In marijuana smoke, ammonia was found at levels about 20-fold those in tobacco in mainstream smoke (Table 3) and about 3-fold greater in sidestream smoke (Table 4), although the absolute values were very much greater in sidestream smoke. The amount of ammonia produced during combustion of tobacco has been related to the amount of nitrate fertilizer applied during growth (30). The simplest explanation for the very high levels of ammonia found in marijuana smoke may be that the marijuana used for this study contained more nitrate than the tobacco sample. The marijuana plants were grown on soil-less growth medium. All fertilizers were commercially available and consisted of water-soluble hydroponic vegetable fertilizers used for horticulture and contained nitrogen

Table 6. Aromatic Amines Determined in Mainstream and Sidestream Smoke from Tobacco and Marijuana under Two Smoking Conditions^a

	I	SO	extreme		
	tobacco	marijuana	tobacco	marijuana	
	ma	ainstream			
1-aminonaphthalene	24.9 ± 2.6	84.4 ± 13.2*	35.1 ± 5.7	$178 \pm 17*$	
2-aminonaphthalene	9.38 ± 0.62	$33.6 \pm 3.5*$	12.9 ± 1.2	66.3 ± 6.84	
3-aminobiphenyl	2.22 ± 0.18	$9.15 \pm 0.63*$	3.68 ± 0.44	18.8 ± 1.8	
4-aminobiphenyl	1.56 ± 0.13	$6.17 \pm 0.44*$	2.54 ± 0.17	13.5 ± 1.5 *	
	sic	destream			
1-aminonaphthalene	195 ± 16	$305 \pm 21*$	144 ± 8	$266 \pm 23*$	
2-aminonaphthalene	136 ± 7	177 ± 19*	79.4 ± 7.4	$139 \pm 12*$	
3-aminobiphenyl	33 ± 2.1	$50.4 \pm 3.7 *$	19.7 ± 1.6	40.6 ± 2.4	
4-aminobiphenyl	23.2 ± 1.8	$31.2 \pm 2.8*$	13.9 ± 1.3	27.3 ± 2.2	

^a Values are provided \pm standard deviations; n = 7. Units are ng/ cigarette. *P < 0.05 vs tobacco.

Table 7. Selected Carbonyl Compounds Determined in Mainstream and Sidestream Smoke from Tobacco and Marijuana under Two Smoking Conditions^a

	tobacco	marijuana	tobacco	marijuana
	m	ainstream		
formaldehyde	200 ± 28	$25.1 \pm 2.7*$	543 ± 91	66.5 ± 11.8*
acetaldehyde	872 ± 101	$448 \pm 44*$	1555 ± 222	$1021 \pm 99*$
acetone	454 ± 44	$237 \pm 23*$	826 ± 93	514 ± 32*
acrolein	125 ± 13	54.3 ± 4.5*	251 ± 32	$148 \pm 13*$
propionaldehyde	72.1 ± 8.1	$32.3 \pm 3.2*$	97.8 ± 14.4	$74.0 \pm 6.4 *$
crotonaldehyde	62.9 ± 7.3	23.1 ± 1.5*	127 ± 17	56.7 ± 7.7*
methyl ethyl ketone	135 ± 16	$62.4 \pm 5.5*$	265 ± 27	140 ± 7*
butyraldehyde	47.1 ± 5.7	46.5 ± 3.8	77.1 ± 10.0	110 ± 8*
	S	idestream		
formaldehyde	886 ± 47	$383 \pm 27*$	662 ± 29	$202 \pm 34*$
acetaldehyde	1587 ± 45	$1170 \pm 69*$	1383 ± 37	896 ± 112*
	000 1 00	FCC 1 244	720 1 22	105 1 515

886 ± 47	$383 \pm 27*$	662 ± 29	$202 \pm 34*$
1587 ± 45	$1170 \pm 69*$	1383 ± 37	$896 \pm 112*$
828 ± 22	$566 \pm 34*$	720 ± 22	$405 \pm 54*$
437 ± 10	$304 \pm 20*$	316 ± 12	$179 \pm 24*$
121 ± 6	120 ± 6	116 ± 5	93.4 ± 11.7
106 ± 3	$49.9 \pm 3.8*$	97.5 ± 8.7	$42.9 \pm 4.7*$
222 ± 9	$160 \pm 11*$	202 ± 17	$116 \pm 13*$
67.1 ± 2.7	$173 \pm 12*$	60.2 ± 1.7	$139 \pm 13*$
	$\begin{array}{c} 1587 \pm 45 \\ 828 \pm 22 \\ 437 \pm 10 \\ 121 \pm 6 \\ 106 \pm 3 \\ 222 \pm 9 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

[&]quot;Values are provided \pm standard deviations; n = 7. Units are $\mu g/$ cigarette. *P < 0.05 vs tobacco.

in the form of both nitrate and ammoniacal nitrogen. However, it is not known to what extent the differences in the growing conditions between the marijuana and the tobacco, including the types of fertilizers used, influenced the levels of nitrates in the plants. The temperature of combustion can also influence the production of ammonia. Burning tobacco results in a reduction of nitrate to ammonia, which is released to a greater extent during sidestream smoke formation (31), suggesting that lower combustion temperatures favor the production of ammonia. Combustion temperature differences between marijuana and tobacco may have also contributed to the differences in ammonia yield, but this was not verified.

Tobacco-specific nitrosamines were not found in the marijuana smoke (Tables 3 and 4). This result was expected, given that these compounds are derived from nicotine. Arsenic and lead were also noticeably absent from the marijuana smoke, which is consistent with the certificate of analysis provided with the plant material (data not shown). Again, this could be a function of the relatively controlled growth conditions.

NO and NO, were significantly elevated in the marijuana smoke under both smoking regimes and in mainstream (Table 3) and sidestream smoke (Table 4). A logical explanation would be that these are arising from the nitrate present in the fertilizer and would be consistent with the very high ammonia yields, detection.

Table 9. PAHs and Aza-arenes Determined in Mainstream Smoke from Tobacco and Marijuana under Two Smoking

Conditions ^a						
		IS	SO	extreme		
no.		tobacco	marijuana	tobacco	marijuana	
1	naphthalene	2907 ± 159	2070 ± 290*	4908 ± 456	4459 ± 646	
2 3	1-methylnaphthalene	2789 ± 176	$2057 \pm 302*$	4888 ± 491	4409 ± 604	
3	2-methylnaphthalene	2093 ± 137	$1292 \pm 189*$	3666 ± 374	$2917 \pm 477 *$	
4	acenaphthylene	385 ± 22	$235 \pm 31*$	711 ± 51	$459 \pm 60*$	
5	acenaphthene	172 ± 10	$91.2 \pm 10.2*$	309 ± 22	$213 \pm 48*$	
6 7	fluorene	769 ± 42	$366 \pm 37*$	1369 ± 100	$659 \pm 64*$	
7	phenanthrene	293 ± 14	273 ± 23	515 ± 32	476 ± 45	
8	anthracene	91.8 ± 5.4	$70.9 \pm 6.7*$	162 ± 13	$136 \pm 9*$	
9	fluoranthene	96.8 ± 3.7	$65.6 \pm 6.5*$	171 ± 11	$117 \pm 12*$	
10	pyrene	88.8 ± 4.3	$45.6 \pm 4.4*$	154 ± 12	$82.3 \pm 11.2*$	
11	benzo(a)anthracene	30.5 ± 2.5	$26.2 \pm 3.4*$	52 ± 5.8	$43.1 \pm 7.9*$	
12	chrysene	38.8 ± 2.3	$26.2 \pm 1.4*$	61.7 ± 7.4	56.3 ± 7.9	
13	benzo(b)fluoranthene	10.8 ± 0.6	$7.18 \pm 1.12*$	21.9 ± 3.1	$16.2 \pm 3.6*$	
14	benzo(k)fluoranthene	3.42 ± 0.32	$1.52 \pm 0.26 *$	7.45 ± 1.47	$4.54 \pm 0.96 *$	
15	benzo(e)pyrene	11 ± 0.6	$6.15 \pm 0.37*$	19.2 ± 1.3	$12.6 \pm 2.7*$	
16	benzo(a)pyrene	14.3 ± 1.2	$8.67 \pm 1.12*$	25.1 ± 2.5	$15.5 \pm 2.9*$	
17	perylene	3.9 ± 0.46	3.72 ± 0.79	10.8 ± 2.3	$6.10 \pm 0.82 *$	
18	indeno(1,2,3,-cd)pyrene	4.58 ± 0.89	$3.60 \pm 0.48*$	10.1 ± 0.9	8.65 ± 3.11	
19	dibenz(a,h)anthracene	1.15 ± 0.21	$1.41 \pm 0.19*$	4.84 ± 1.05	$2.83 \pm 0.59 *$	
20	benzo(g,h,i)perylene	3.77 ± 0.66	$2.56 \pm 0.36*$	7.17 ± 1.02	6.03 ± 2.34	
21	5-methylchrysene	< 0.035	< 0.035	< 0.071	< 0.071	
22	benzo(b)fluoranthene	11.5 ± 1.4	$6.47 \pm 0.86 *$	19.1 ± 1.7	17.6 ± 1.4	
23	benzo(j)fluoranthene	5.81 ± 0.44	$4.27 \pm 0.83*$	13.3 ± 1.8	12.2 ± 2.1	
24	dibenz(a,h)acridine	< 0.314	< 0.314	< 0.628	< 0.628	
25	dibenz(a,j)acridine	< 0.260	< 0.260	< 0.519	< 0.519	
26	7H-dibenzo(c,g)carbazole	< 0.139	< 0.139	< 0.278	< 0.278	
27	dibenz(a,l)pyrene	< 0.317	< 0.317	< 0.634	< 0.634	
28	dibenz(a,e)pyrene	0.531 ± 0.198	0.156 - 0.522	< 0.313	< 0.313	
29	dibenz(a,i)pyrene	0.987 ± 0.145	0.164-0.548*	2.55 ± 0.60	< 0.329*	
30	dibenz(a,h)pyrene	0.177-0.589	< 0.177	< 0.354	< 0.354	

[&]quot;a Values are provided \pm standard deviations; n = 7. Units are ng/cigarette. *P < 0.05 vs tobacco. Values shown with "<" were below the limit of detection; values shown as a range were above the limit of detection but below the limit of quantitation.

Table 10. PAHs and Aza-arenes Determined in Sidestream Smoke from Tobacco and Marijuana under Two Smoking Conditions^a

Conditions							
		ISO		extreme			
no.		tobacco	marijuana	tobacco	marijuana		
1	naphthalene	6861 ± 419	16748 ± 2396*	10111 ± 758	14398 ± 2614*		
2 3	1-methylnaphthalene	6265 ± 365	14812 ± 1511*	7115 ± 787	$11016 \pm 2954*$		
3	2-methylnaphthalene	6513 ± 306	$11832 \pm 1078*$	7137 ± 778	9030 ± 2236		
4	acenaphthylene	2684 ± 184	$4056 \pm 452*$	2171 ± 123	$2876 \pm 571*$		
5	acenaphthene	960 ± 31	$1345 \pm 101*$	791 ± 51	873 ± 163		
6	fluorene	1429 ± 71	$1073 \pm 72*$	1242 ± 56	$873 \pm 67*$		
7	phenanthrene	2818 ± 112	$4932 \pm 306*$	2117 ± 98	$3113 \pm 477*$		
8	anthracene	755 ± 38	1135 ± 75*	542 ± 26	$693 \pm 111*$		
9	fluoranthene	699 ± 26	$952 \pm 61*$	520 ± 24	$619 \pm 78*$		
10	pyrene	528 ± 35	$609 \pm 60*$	377 ± 25	398 ± 38		
11	benzo(a)anthracene	159 ± 8	245 ± 16*	113 ± 7	$170 \pm 21*$		
12	chrysene	401 ± 21	$488 \pm 28*$	291 ± 18	$331 \pm 27*$		
13	benzo(b)fluoranthene	98.4 ± 8.4	$114 \pm 7*$	79.8 ± 4.3	80.3 ± 8.0		
14	benzo(k)fluoranthene	25.8 ± 4.1	27.3 ± 2.8	19.3 ± 3.1	19.7 ± 2.2		
15	benzo(e)pyrene	94.9 ± 6.9	87.9 ± 7.5	72.9 ± 3.8	$63.1 \pm 6.2*$		
16	benzo(a)pyrene	91.7 ± 7.1	$101 \pm 9*$	62.7 ± 4.2	$69.7 \pm 6.3*$		
17	perylene	23.6 ± 2.9	26.4 ± 4.7	16.4 ± 1.7	$19.9 \pm 2.7*$		
18	indeno(1,2,3,-cd)pyrene	41.7 ± 5.7	45.9 ± 6.8	32.8 ± 6.6	27.4 ± 3.3		
19	dibenz(a,h)anthracene	13.8 ± 3.1	15.6 ± 3.2	13.9 ± 2.8	$10.8 \pm 1.2*$		
20	benzo(g,h,i)perylene	44.7 ± 8.0	41.8 ± 9.6	32.8 ± 7.2	30 ± 5.0		
21	5-methylchrysene	< 0.354	< 0.354	< 0.354	< 0.354		
22	benzo(b)fluoranthene	118 ± 9	$102 \pm 11*$	90.4 ± 5.6	86.7 ± 12.5		
23	benzo(j)fluoranthene	102 ± 7	$120 \pm 16*$	72.3 ± 6.2	$124 \pm 14*$		
24	dibenz(a,h)acridine	<3.138	<3.138	<3.138	< 3.138		
25	dibenz(a,j)acridine	< 2.597	< 2.597	< 2.597	< 2.597		
26	7H-dibenzo(c,g)carbazole	<1.389	< 1.389	< 1.389	<1.389		
27	dibenz(a,l)pyrene	<3.172	< 3.172	< 3.172	< 3.172		
28	dibenz(a,e)pyrene	< 1.565	< 1.565	< 1.565	< 1.565		
29	dibenz(a,i)pyrene	< 1.644	< 1.644	< 1.644	< 1.644		
30	dibenz(a,h)pyrene	<1.768	<1.768	<1.768	<1.768		

^a Values are provided ± standard deviations; n = 7. Units are ng/cigarette. *P < 0.05 vs tobacco. Values shown with "<" were below the limit of

Table 4. Various Analytes Including Tobacco-Specific Compounds and Heavy Metals Determined in Sidestream Smoke from Tobacco and Marijuana under Two Smoking Conditione

Table 6. Aromatic Amines Determined in Mainstream and idestream Smoke from Tobacco and Marijuana under Two Smok Conditions^a

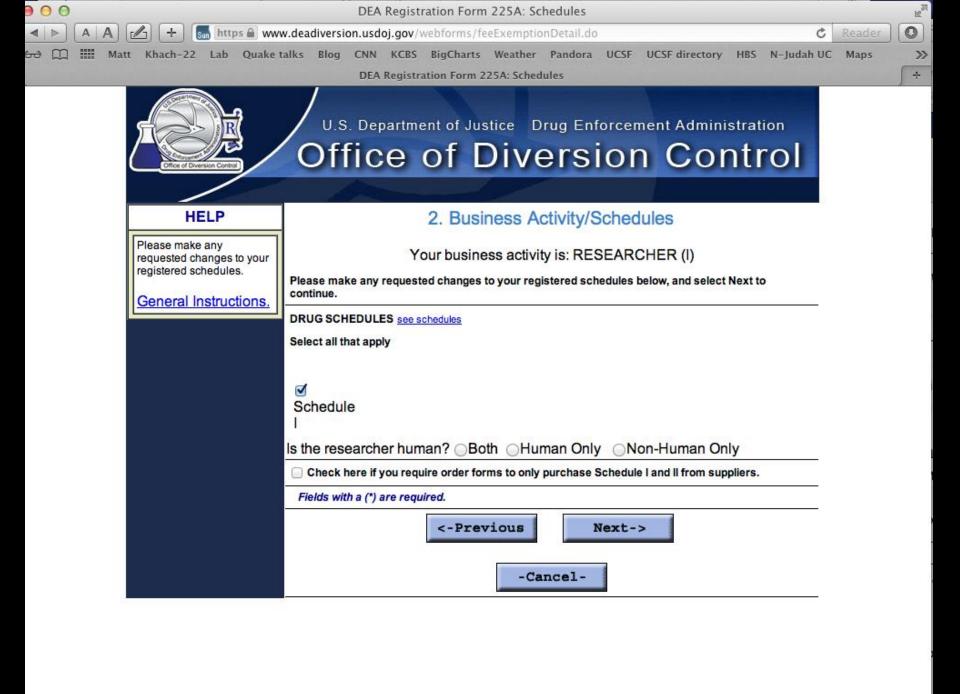
Dried plant smoke:

similar chemicals in varied proportions

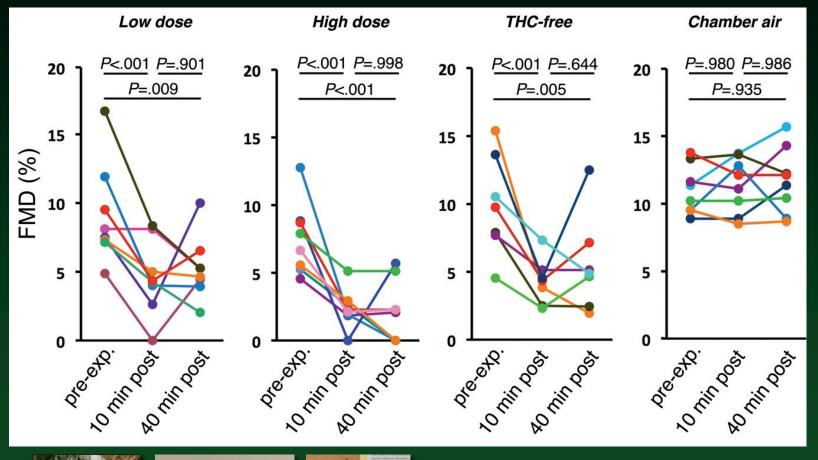
Sample comparisons of components of tobacco and marijuana secondhand smoke

NN 92±11.7 $^{\circ}$ 4.63 $^{\circ}$ 61±5.1 $^{\circ}$ 4.40 $^{\circ}$ 6.31±0.61 $^{\circ}$ 4.40 $^{\circ}$ 6.31±0.61 $^{\circ}$ 4.40 $^{\circ}$ 6.31±0.61 $^{\circ}$ Mainstream and S Mainstream and S	arijuanaunds Determined in 16 benzo(a)pyrene benzo(a)pyrene 17 persone 17 persone 18 indeped 12 3 collayeree	14.3 ± 1.2 3.9 ± 0.46 4.58 ± 0.89	tobacco	25 marijuana 5 ± 2.9*
tar (mg/cig) $\frac{103}{118}$ $\frac{31.0}{35.5}$ $\frac{24.3 \pm 1.8}{49}$	0.7 ± 2.5* naphthalene (ng/c		6861 ± 419	16748 ± 2396*
NO $(\mu g/cig)$ $<\frac{11.3}{17.5}$ $<\frac{11.3}{17.5}$ 1101 ± 47 20	87 ± 152* formaldehyde (μg/	<pre><0.035 11.5 ± 1.4 5.81 ± 0.44</pre>	888 ± 47	$383 \pm 27^{*17.6 \pm 1.4}$
"VCO (mg/cig)d deviations. For tar, nicoi61m7 ± 2 00 lehyde	.0 ± 3.7* 543 ± 91 665 ± 11 acetaldehyde (µg/d	cig) <0.314 <0.260	1587 ± 45	1170 ± 69*
nicotine (mg/cig) 4.77 \pm 0.26 0.	065 ± 0.018* 514 ± 32 acrolein (µg/cig) acrolein		437 ± 10	304 ± 20* < 0.278 < 0.634
ammonia (µg/cig) 5568 ± 322 14	270 ± 472* 17 567 277 methyl ethyl ketone	e (μg/cig)	222 ± 9	2.5160 ± 11*<0.329*
nd HCNn (µg/cig) obacco and Marijuana 83.8 ± 7.8 dehyde 68	55 ± 29*8 77.1 ± 10.0 110 ± 8* phenol. (μg/cig)	is; $n = 7$. Units are ng/cigare	ne. 264 ± 13 Value	s sh260 ± 1,1 below the limit of
pyridine (µg/cig) extreme 265 ± 1.1 maldehyde 30	$7^{\text{sidestent}}$ 662 ± 29 $202 \pm 34^{\text{e}}$ detection; values shown as a processor $(\mu g)^{\text{e}}$	re the limit of detection but be	64.6 ± 2.5	104 ± 6*
benzene (μ g/cig) 290 ± 110 34	12±512*40 720±22 405±54° 119±24° pyrene P(ng/cig)arenes	Determined in Sidestream	5528 ± 35 cco and	Ma 609 ± 60* Smoking
ridtoluene $(\mu g/cig)$ $_{2.22\pm0.22}^{59\pm4.9}$ $_{2.68}^{93.0}$ 516 ± 20 onaldehyde 70	14 ± 29* 97.5 ± 8.7 42.9 ± 4.7 benzo(e)pyrene (n	g/cig) Cond	94.9 ± 6.9	87.9 ± 7.5
3-bungtone 64.82 (μ g/cig) $^{124\pm7}_{54\pm09}$ $^{138}_{132}$ 105 ± 10 aldehyde 16	22 ± 10 1 202 ± 17 116 ± 13 anthracene (ng/cig)	tobacco 6861 ± 419	755 ± 38	tot 1.135 ± 75* rijuana
"Values are provided	+ standard deviations: $n = 7$ Units are ual			

From Moir et al., 2008. Subset of 65 components analyzed under standard tobacco smoking conditions

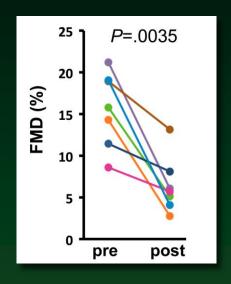

Inhaling a whole chemistry lab...

the plant material (data not shown). Again, this could be function of the relatively controlled growth conditions.


smoke under both smoking regimes and in mainstream (Table 3) and sidestream smoke (Table 4). A logical explanation would be that these are arising from the nitrate present in the fertilize

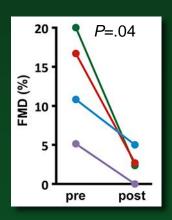
h "<" were below the limit

Marijuana SHS for 30 minutes impaired FMD (American Heart Association, Chicago, Nov. 2014)



low dose = \sim 200 µg/m³ particles; high dose = \sim 670 µg/m³ particles (starting concentrations) "30 minutes is kind of long, how about shorter times?"

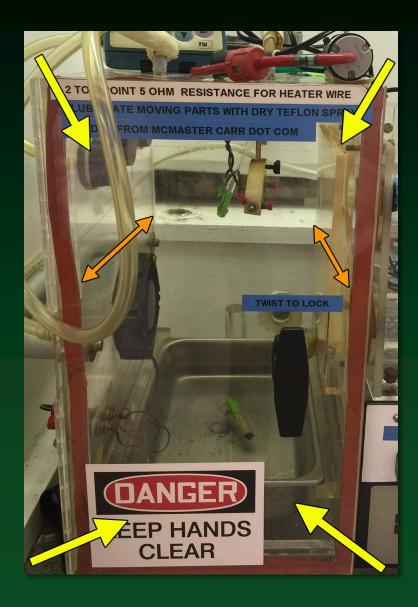
marijuana 1 min



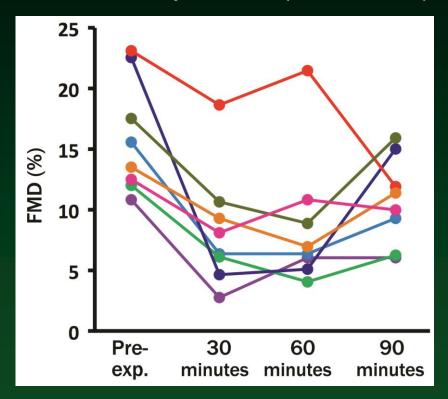
59% drop in FMD

Marijuana SHS for 1 minute lowered FMD

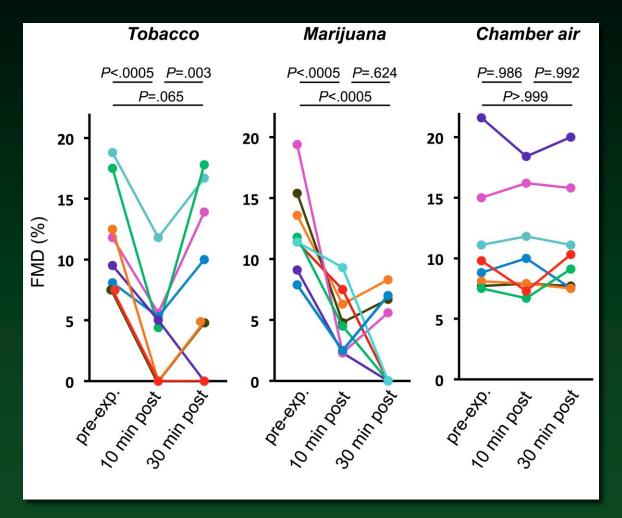
"Could the impairment in FMD be caused by smoke from the burning paper, rather than tobacco and marijuana?"



SHS from marijuana without paper still impairs FMD


"They totally smoke out the rats"

The smoke was invisible in the exposure chamber


"How long does it take for FMD to recover?"

1 minute exposure (THC-free)

Marijuana SHS for 1 minute lowered FMD for at least 90 minutes

"How do marijuana and tobacco compare in impairment of FMD?"

Impairment from one minute of marijuana SHS persists longer than impairment from tobacco SHS

Summary of marijuana results

Wang et al., 2016, J Am Heart Assoc 5:e003858

Marijuana SHS for one minute substantially impairs vascular endothelial function in rats.

Neither THC nor paper smoke are required for marijuana SHS to impair vascular function.

...nicotine is not required for impairment of vascular function by smoke.

One minute of marijuana SHS exposure impairs vascular function for at least 90 minutes, longer than impairment from tobacco SHS.

Physicians

commentary by AHA past president, Ralph Sacco, MD, FAHA

Physicians

Presented at the Pediatric Academic Societies 2016 Meeting (Dr. Karen Wilson):

One in six infants and toddlers admitted to a Colorado hospital with coughing, wheezing and other symptoms of bronchiolitis tested positive for marijuana exposure.

Steering Committee

Gavin Newsom

Lieutenant Governor of California

Who We Are

The Blue Ribbon Commission on Marijuana Policy was formed in light of the likelihood that a marijuana legalization initiative will be placed policy challenges and offer possible solutions. The Commission is comprised of leading policymakers, public health experts and

Toronto Star 11/25/15:

Using medical marijuana now OK in public places in Ontario under new regulations

The exemption includes everything from movie theatres to restaurants, offices, stadiums, playgrounds full of children and more

Toronto Star 11/26/15:

Ontario government taking medical marijuana plan back to the drawing board

Associate Health Minister Dipika Damerla quickly reversed course Thursday over concerns about exposure to second-hand cannabis smoke in restaurants, theatres, offices and other public spaces where tobacco smoking is banned.

California State Assembly bill AB 2300 (Jim Woods)

Clarifies that landlords can prohibit smoking of marijuana even with medicinal ID card in properties where tobacco smoking is banned

- Our 2014 report cited as a major reason for the bill
- Passed State Assembly Judiciary Committee 10-0
- Passed State Assembly 77-0 (3 non-votes)
- Died in State Senate Judiciary Committee

Regulators and lawmakers Pleasanton Weekly.com

Home News Town Square Blogs A&E Real Estate Print Edition

NEWS

Uploaded: Tue, Aug 15, 2017, 11:40 pm

City Council tweaks proposal for smoking restrictions at apartments

Medical marijuana smoking, with doctor's note, would be allowed only in designated area at complexes

by Jeremy Walsh / Pleasanton Weekly

The Pleasanton City Council took another step
Tuesday toward establishing new stringent

The Pleasanton City Council took another step Tuesday toward establishing new stringent smoking regulations for rental apartment complexes across the city.

Reviewing a proposed ordinance they gave initial support to two months ago, council members left most of the original proposal intact -- including the ban on tobacco smoking in apartment units and common areas -- but they adjusted course to limit medical marijuana smoking at complexes only to designated outdoor smoking areas.

Vice Mayor Jerry Pentin said he supported that option for medical marijuana smoking "so we're not banning it entirely but we're still keeping it away from people who are inside their own rental units and dealing with secondhand smoke."

City staff's recommendation was to allow medical marijuana smoking inside apartment units "if tenant provides landlord written documentation that tenant needs it for medical purposes, no alternative means of delivery or ingestion are available and tenant is unable to smoke outside," assistant city attorney Larissa Seto said.

The council's follow-up discussion Tuesday focused on how to reduce the effects of secondhand smoke on neighbors living in close quarters in apartments while accommodating residents who rely on marijuana for legitimate medical reasons but can only smoke it -- and what about residents physically unable to leave their apartments...

Tamiko Johnson of the Alameda County Public Health Department also voiced support for prohibiting medical marijuana smoking indoors.

"There's no safe level of secondhand smoke exposure," Johnson told the council. "From experience with other cities, gaining compliance with your smoke-free-housing law and having effective enforcement if you're allowing someone to smoke anything inside their apartment is going to be incredibly difficult for you all."

"I don't have problems with people smoking medical marijuana. I have problems with people who smoke it and then the person next door has to suffer from the secondhand smoke," Pentin said.

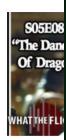
"When people take medication, it normally doesn't affect anybody else. And in this case, it does affect other people," Mayor Jerry Thorne added. "I just kind of wonder where you draw the line here. It's kind of darned if you do, darned if you don't."

How Dangerous Is Secondhand Marijuana Smoke?

DECEMBER 2, 2014 BY AARON WYSOCKI - LEAVE A COMMENT

Smoking marijuana is typically thought of as not that bad, especially compared to the hazards of drinking. But is secondhand smoke from marijuana more dangerous than people think? Or does it damage your lungs, heart, and blood vessels in the same ways as cigarette smoke? Find out with John and Sandra!

What do you think of this study? Will it deter you from smoking marijuana, or spending time around those who do? Let us know in the comments!



The Public

The Scient Explaine Paleont

... [Read N

Game O

"The Young Turks Network"

How Dangerous Is Secondhand Marijuana Smoke?

DECEMBER 2, 2014 BY AARON WYSOCKI - LEAVE A COMMENT

Smoking marijuana is typically thought of as not that bad, especially compared to the hazards of drinking. But is secondhand smoke from marijuana mare dangery is than people think? Or does it damage your lungs, heart, and blood vessels in the same ways as cigarette smoke? Find out with John and Sandra!

What do you think of this study? Will it deter you from smoking marijuana, or spending time around those who do? Let us know in the comments!

The Public

"The Young Turks Network"

The

Pal

Acute and long-term cardiovascular risk is unclear

Risk of MI goes up ~5-fold in the hour after marijuana use (Mittleman, 2001)

No clear correlation between long-term marijuana use and cardiovascular disease later in life (e.g., CARDIA study)

...but, 3-fold increase in risk of death from hypertension reported for marijuana users relative to non-users (Yankey, 2017)

by JEANINE BARONE | OCTOBER 25, 2016

Matt Springer, PhD, is a Professor of Medicine at the University of California, San Francisco, who studies the effects of secondhand marijuana smoke. He spoke with us about the implications

of the recent announcement by the federal Drug Enforcement Administration that it will lift restrictions on the growing of marijuana to supply researchers.

How will the DEA's announcement affect your research?

Not as much as you might think. I still will not be able to study what I'd like to. I'd like to study realworld cannabis used by real people. UCSF used real-world cigarettes, not research-reference cigarettes, for tobacco studies in the past. But

Public Release

Health Effects of Cannabis and Cannabinoids

Current State of Evidence and Recommendations for Research

This report will be available to download as a free pdf:
Nationalacademies.org/CannabisHeal thEffects

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Cardiometabolic Risk

 The evidence is unclear as to whether and how cannabis use is associated with heart attack, stroke, and diabetes.

Policy Goals:

Public exposure to secondhand smoke should be avoided whether the source is tobacco or marijuana.

Policy Goals:

Change the perception and the dialogue

Policy Goals:

Change the perception and the dialogue

"There's tar aind the thicals" "It's prosed to my bu"

"No one said'It ISN'T ok"

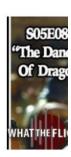
stay tuned

If the FMD impairment by marijuana smoke is caused by the dried plant material combustion smoke, rather than the THC...

How Dangerous Is Secondhand Marijuana Smoke?

DECEMBER 2, 2014 BY AARON WYSOCKI - LEAVE A COMMENT

Smoking marijuana is typically thought of as not that bad, especially compared to the hazards of drinking. But is secondhand smoke from marijuana more dangerous than people think? Or does it damage your lungs, heart, and blood vessels in the same ways as cigarette smoke? Find out with John and Sandra!


What do you think of this study? Will it deter you from smoking marijuana, or spending time around those who do? Let us know in the comments!

The Scie Explaine Paleont

... [Read M

Game O

