

The SMART Approach to Acute Ischemic Stroke Therapy

Nobl Barazangi, MD, PhD

October 29, 2010

Sutter Pacific Medical Foundation at CPMC

CPMC Comprehensive Stroke Care Center and Center for Stroke Research

Disclosures

- Speaker at Education/Training Session for Genentech (2010)
- Sutter Pacific Medical Foundation Grant for CTP/IV rt-PA (PERFUSE) Investigator-Initiated Study (2011)

Acute Ischemic Stroke

- Definitions and epidemiology
 - Acute ischemic stroke (AIS)
- Hyperacute (<6-8 hrs) AIS strategies and therapy
 - Approved therapies
 - Emerging therapies
 - The SMART rt-PA inclusion and exclusion criteria
 - Neuroimaging as a selection tool
 - Healthcare infrastructure for stroke patient triage and care
 - Streamlining care
 - Telemedicine

Stroke Epidemiology and Facts

- 3rd leading cause of death and leading cause of disability in US
- Prevalence: ~750,000 strokes/year in US, 70% of patients survive
- Cost: ~\$68 billion/year
- RF's: >40 yrs, heart dz, HTN, tob, DM, HL, h/o TIA/stroke, obesity, drug use, recent childbirth, sedentary lifestyle

Stroke Epidemiology and Facts

• Sex:

- ~60,000 more women than men have stroke/year
- 60% of total stroke deaths are women
- Race:
 - African Americans twice likely to die from stroke, rate of first stroke double of Caucasians
 - AA males 3x likely to have ischemic stroke than same age grp of Caucasians
 - ~50% AA women will die of CV disease (hrt dz or stroke)
 - Asian Americans: increased risk of hemorrhagic stroke and intracranial atherosclerosis, but overall lower risk of death from stroke

Stroke Definitions

- Ischemic and hemorrhagic stroke:
 - Sudden neurologic damage
 - Caused by disturbance of circulation to the brain/spinal cord/retina
- Transient Ischemic Attack (TIA):
 - Temporary, focal neurologic deficit related to ischemia, lasting <24 hrs
 - Tissue-based def'n: transient episode of neuro dysfunction caused by ischemia without acute infarction

to an area of the brain

Stroke 2009; 40: 2276-2293

Etiologic Subtypes of Stroke and Frequency

Acute Ischemic Stroke (AIS): Hyperacute

- Strategies
- Approved therapies
- SMART Criteria
- Neuroimaging as a tool to identify best therapeutic option: cases

Acute Ischemic Stroke (AIS): Hyperacute Strategies

- Reperfusion and recanalization:
 - Drug therapy (rt-PA)
 - Devices
- Neuroprotection:
 - Pre-hospital (Mg++ Rx)
 - Post-hospital (hypothermia, hyperoxia?)
- Augmenting collateral flow and saving ischemic penumbra:
 - HTN'ive therapy
 - Devices

AIS Hyperacute Strategies: Saving "Tissue at Risk"

Tissue at risk or ischemic penumbra

AIS Hyperacute: Case 1

- History
 - 16 yo boy with h/o stroke 2006 (R MCA, no residual), migraine H/A
 - Last seen normal 13:30 noted to have L facial droop, slurred speech, poor balance while walking + severe H/A
 - PMH: neg stroke workup except for ?elevated Factor XIII; migraine H/A but uncomplicated; asthma
 - SH: basketball prodigy, no h/o drugs of abuse
- ED Assessment at 15:13:
 - MS: alert, very mild L neglect, orient x 3, language intact
 - CN: dense L facial droop, dysarthria
 - Motor: slower L FFM/FT; mild L dysmetria on FNF
 NIHSS ~5
- CT/CTA/CTP....

AIS Hyperacute: Case 1 CT

AIS Hyperacute: Case 1

MTT

AIS Hyperacute: Case 1

CBV

AIS Hyperacute: Case 1 CTA

What should we do?

AIS Hyperacute: Case 1

•Hospital Course:

-After appropriate consent from mother...

-Full dose IV tPA (0.9mg/kg) given at 16:00 (2.5hrs)

- Follow-up exam in ICU: H/A persisted, but L facial droop and L wx/ataxia improved

•Follow-up:

-Pt continued to improve neurologically

-MRI and TTE performed following day...

AIS Hyperacute: Case 1 MRI

AIS Hyperacute: Case 1 MRI

AIS Hyperacute: Case 1 MRA

AIS Hyperacute: Case 1

•Hospital Course:

-TTE and TEE: mitral valve mass (atrial side); mass consistent with vegetation or papillary fibroelastoma; valve itself is normal -Pt underwent CT surgery to remove mass...

•Follow-up:

-Pathology of mass: thrombus

-Hypercoag w/up performed, Heme/Onc consulted

-Pt started on coumadin

-Pt back to normal as outpt

AIS Hyperacute: Therapies

- Approved therapies
 - Thrombolysis: IV rt-PA
 - Mechanical embolectomy (approved devices but not proven therapy)
- Emerging therapies
 - Thrombolysis: IA rt-PA, combined IV and IA rt-PA, new fibrinolytics
 - New devices: U/S augmentation
 - Neuroprotection: hypothermia, neuroprotective drugs
 - Augmentation of collateral flow

Thrombolysis

Thrombolytic Therapy: Background

- Recombinant Tissue Plasminogen Activator (rt-PA, Alteplase, tPA)
 - Clot dissolving medication
 - Originally used in pt's with MI
 - IV tPA approved by FDA for stroke use
 6/96
 - Initially approved for use <u>less than 3</u>
 <u>hours</u> after symptom onset, now safe to use up to <u>4.5 hrs</u>

Thrombolysis with IV rt-PA: Clinical Outcomes

- 30-40% increase in chance of good outcome at 3 mth (39% rt-PA vs 26% placebo mRS 0-1 at 3 mth)
- Number needed to treat: 8 pt's for one without significant disability
- 6.4% chance of symptomatic ICH (vs. 0.6%)
 - Overall mortality similar in both groups
 - ICH mostly in people with severe stroke
- Outcome depends upon:
 - Benefit seen in all subgroups
 - Severity of symptoms
 - Time to treatment
 - Other medical factors (i.e. blood pressure, general medical condition, brain imaging findings, recent bleeding/surgery etc)

Time Window for IV rt-PA Extended: ECASS III

Time of onset < 3-4.5 hrs

- More pts had favorable outcome at 90 days (52% vs. 45%; OR 1.34) with rt-PA
- Similar to original rt-PA study (OR 1.7)
- Different exclusion criteria: >80 yo, NIHSS>25, DM and prior stroke
- Safety:
 - Any ICH 27% vs. 17.6%, symptomatic ICH 2.4% vs.
 0.2% in placebo (less than original study)
 - No change in mortality
- CPMC, AHA/ASA Guidelines: IV rt-PA window extended to 0-4.5 hrs
 NEJM 2008; 359: 1318-1329 Stroke 2009; 40: 2945-48

NINDS rt-PA Stroke Study:

Time to Treatment and Odds Ratio of Favorable Outcome

Relative Contraindications to rt-PA

- Conditions that increases bleeding risk:
 - Anticoagulation (INR > 1.7), recent (< 30d) surgery/ head trauma or stroke, low platelets, other bleeding disorder, acute transmural MI
- Seizures at stroke onset
 - To avoid stroke mimics due to seizure (Todd's paralysis)
- Uncontrolled BP >185/110
 - May tx with 1-2 doses IV BP meds within 10-15'
- Significant metabolic abnormality
 - To avoid stroke mimics due to metabolic derangement
- Rapidly resolving symptoms
 - Mild to moderate fluctuations common
- Major CT scan abnormality
 - Commonly over interpreted
- Significant dementia, short life expectancy

Broadening Indications for rt-PA in Acute Stroke?

- Time of onset up to 4.5 h and beyond?
 - Neuroimaging as a tool to select patients beyond 4.5hr ?
- Defining "significant" neurological deficit
 - Simple rule: If you feel the deficit will impair the patient's quality of life, then it is "significant"
 - Usually, NIHSS ≥ 4 (NIHSS maximum = 42) but will do NIHSS 0!!
- There many clinical situations showing benefit of IV rt-PA beyond guidelines (children, post-op, etc..) requires further study!
- Recent data showing no significant risk in treating stroke mimics with rt-PA
 Stroke 2007: 38: 2612-18

AIS Hyperacute: Case 2

- <u>91</u> year old female at remote hospital
- Acute aphasia, right sided weakness
- Symptom onset time: 15:15
- Past Medical History:
 - congestive heart failure
 - atrial fibrillation
 - active bleeding hemorrhoids
- <u>Receiving warfarin: INR 2.5</u>

Case 2: Examination

- Telemedicine consultation using remote video equipment: 16:15 (60 minutes)
- Exam: NIHSS=27 (right hemiplegia, aphasia, neglect, visual field cut)
- Non-Contrast Head CT: negative

What should we do?

Thrombolysis Contraindications in this Case

- Older Age (≥80)
- Large stroke (NIHSS >20)
- Anticoagulation (INR 2.5)
- Active Bleeding (hemorrhoids)

What should we do?

Case 2: Management

- Half dose IV rt-PA (0.45 mg/kg) administered at 17:30 (2h:15m)
- Transferred
- Upon arrival (3 hours later): Aphasia improved, right side strength is better (3/5)
- CTA/CTP performed

CT Perfusion (CTP)

rCBV (damaged tissue)

•rMTT (tissue at risk)
CT Angiogram (CTA)

Case 2: Management and Outcome

- No further treatment
 - CTP: no tissue at risk
 - CTA: no large artery occlusion
- Patient experienced <u>full recovery</u>
- No bleeding
- MRI

Case 2: Diffusion Weighted MRI (DWI)

Conclusions

- IV rt-PA is <u>not</u> contraindicated in many patients who are frequently excluded from treatment including:
 - Age >80 (or >90)
 - Large strokes (NIHSS > 20)
 - Anticoagulated (INR >1.7)
 - Active bleeding (mild)
- CTP/CTA useful in management
- Criteria for IV rt-PA need revision
 - Many more patients can be treated safely and effectively
 - Use SMART criteria!!

SMART Simplified Management of Acute Stroke Using Revised Treatment Criteria

Courtesy of Dr. David Tong

Background

- Use of IV rt-PA for ischemic stroke is very low
 - 1.1-3% of all ischemic stroke patients^{1,2}
 - -~5-10% of stroke patients at stroke centers
 - Highest published sustained treatment rate:
 - 15% at UT Houston stroke program³

- 1. Ann Emerg Med May 2007
- 2. Reed, Stroke 32(8); 2001
- 3. Arch Neurol 2001;58:2009-2013

The SMART Premise

- Current IV rt-PA treatment criteria are too strict
 - Clinical trial \neq clinical practice
 - Exclusion criteria are <u>not</u> evidence based
 - Many centers' exclusion criteria even more strict than guidelines
- Simplified Management of Acute Stroke using Revised Treatment Criteria (SMART)
 - Rethink exclusion criteria
 - Increase number of candidates for treatment
 - Streamline management
 - Use new technology to further increase treatment
 - CT perfusion (CTP)/CT angiography (CTA)
 - Telemedicine: inexpensive, accurate

Common IV rt-PA Contraindications That Are <u>NOT</u> SMART Criteria

- Stroke severity (mild or severe)
- Older Age (≥ 80)
- Presence of other asymptomatic brain lesions (e.g. tumor, aneurysm, subdural hematoma etc.)
- Improving symptoms (if still disabling)
- Stroke, head trauma, surgery, other bleeding or arterial puncture < 3 months
- Seizure
- Blood sugar (low or high)
- Elevated PTT/INR (on warfarin, heparin, LMWH)
- Pregnancy/children
- Dementia
- Renal failure, MI, other co morbidity
- Early infarct signs on CT

SMART: IV rt-PA Absolute Exclusion Criterion

 Acute intracranial hemorrhage that is the cause of the patient's symptoms

SMART: Frequency of Common Relative Contraindications

SMART: Reduction of rt-PA Exclusions

- No NIHSS (stroke severity) cut offs
 - symptoms must be "disabling"
 - "mild strokes" cause significant morbidity/mortality
 - ~20-30% of "mild strokes" are disabling, especially if large artery occlusion present ¹⁻³
 - Represent ~20-30% of acute stroke patients ¹⁻³
 - Higher risk of subsequent deterioration ¹⁻³
 - rt-PA effective in these patients ⁴
 - Severe strokes also benefit from IV rt-PA⁶
- No age cut off
 - Older patients generally do worse, but still benefit from treatment^{6,7}
 - 1. Smith, Stroke. 2005 Nov;36(11):2497-9
 - 2. Nedeltchev Stroke. 2007;38:2531-2535
 - Barber, Neurology 2001;56:1015-1020
 - Ann Emerg Med. 2005; 46: 243–252
 - De Kayser, Stroke. 2007;38:2612-2618
 - Stroke 28; 1997: 2119-2125

З.

4. 5.

6.

7. Eur Neurol. 2005;54(3):140-4

SMART: Dealing with Stroke MIMICS

- If unclear it is a stroke, should you treat?
 - Risk of hemorrhage is very small (<1%)¹⁻⁴
 - Repercussion of missing treatment may be high
 - Mimics may constitute 10-23% of acute stroke rt-PA cases at high volume centers¹
 - Risk of bleeding is 0% in these cases
 - If you have not treated a stroke mimic with rt-PA, you are likely under treating

Stroke. 2009 Apr;40(4):1522-5
 Chernyshev, International Stroke Conference 2009
 Stroke. 2006; 37: 769–775
 Neurology. 1999; 52: 1784–1792

CPMC Thrombolysis Rate 6/06-12/09

Using SMART Criteria: Our Hospital's Results

- Between 7/06 and 12/09, 178 patients received thrombolysis
 - Represents 25-30% of <u>ALL</u> acute ischemic stroke patients at our hospital during this time
 - ->95% of patients eligible for rt-PA RECEIVE it
- 135 patients (76%) treated with IV rt-PA alone using SMART criteria

SMART IV rt-PA Stroke Patient Characteristics

- 49% male
- Mean NIHSS= 10
- Median age 76 years (NINDS age: 66-69)
 - **42% ≥ 80 years old**
 - 13% ≥ 90 years old
- Median door to needle time: 58 minutes
- Median symptom onset time to treatment time:
 - -135 minutes (95% CI 65-195 minutes)
 - 21% >3h after symptom onset

SMART: High Number of Relative Treatment Contraindications

- On the basis of common IV rt-PA exclusion criteria 89% of these patients would NOT have qualified for thrombolysis
 - 42% age ≥ 80 (13% ≥ 90)
 - -24% NIHSS ≤ 5 (41% NIHSS ≤ 7)
 - Average # contraindications: 1.4, (range 0-4)
 - 45% had more than one relative contraindication

AIS: Healthcare Infrastructure

- Streamlining stroke patient triage and care
- Telemedicine

SMART: Streamlining the ED rt-PA Evaluation Process

Evaluation Elements Recommended by AHA/ASA¹

- Patient history
- Noncontrast CT scan of the brain
- Physical examination
- Neurological examination using a formal stroke scale (eg, NIHSS)
- Diagnostic tests include, but are not limited to:
 - Electrocardiogram (ECG) Prothrombin time (PT)/international normalized ratio (INR)
 - Blood glucose

- Activated partial thromboplastin time (aPTT)
- Serum electrolytes/renal function tests
 Oxygen saturation, complete blood count, including platelet count

Possible Expedited Protocol to Further Reduce Time to Treatment: CPMC Experience^{2-4*}

- 1-hour time of arrival to IV rt-PA administration
- Stroke code alerts CT technologist to clear scanner
- 25 minutes to CT completion; 45 minutes for results; Stroke MD reads scans
- 45 minutes to lab results
- Stroke MD available 24/7, telemedicine evaluation possible if not in-house
- Do not wait for lab results for CTP/CTA, or for IV rt-PA if patient is not anticoagulated
- rt-PA ordered the minute CT negative for ICH; estimated weight used (and safe) for IV rt-PA

No written consent required

*Based on study of 103 patients. CTP = computerized tomography perfusion, CTA = computed tomographic angiography 1. Adams HP, et al. *Stroke.* 2007;38:1655-1711. 2. Sattin JA, et al. *Stroke.* 2006;37:2935-2939.

3. Gottessman RF, et al. Neurology. 2006;67:1665-1667. 4. Mishra S, et al. Acad Emerg Med. 2007;14(5 Suppl 1):S33.

CPMC SMART: Rapid ED evaluation

- Door to CT completion: 15 minutes
- Door to needle: 62 minutes
- Symptom onset to needle: 135 minutes
- Requires strong commitment from hospital and staff
- Increases options for treatment

AIS Hyperacute: Case 4

- Male (79 years), chronic atrial fibrillation, on warfarin (INR 2.2)
 - History of prior stroke with residual, mild right visual field cut
- Acute onset left hemiparesis, right gaze preference
- Last considered well: 11:00 pm
 - Possibly okay at 12:00 midnight
- Collapsed going to bathroom: 1:30 am
- Arrival at local ED: 2:30 am; telestroke consult: 3:00 am

AIS: Case 4

Examination

 0/5 left side, right gaze, left visual field, left facial, dysarthria, NIHSS=16

CT hyperdense MCA dot sign

Old left occipital stroke

•AIS: Case 4

Case 4: Contraindications?

Anticoagulation?

Uncertain time of onset?

■ Age?

Case 4: Management

- Discussed treatment approach with patient and wife
- Patient treated: 4:00 AM
- Rationale
 - Stroke was severe and unlikely to improve spontaneously
 - Far from IA treatment (at least 2 hours)
 - There is no evidence that IA is better than IV
 - There is no evidence anticoagulation increases bleeding risk significantly
 - IA generally always uses heparin!

AIS: Case 4

Upon arrival at CPMC: 6:00 AM

- Major improvement: NIHSS=2
- CT/CTA/CTP

FS: CTA/CTP

AIS: Case 4 CTA/CTP

AIS: Case 4

- Despite M2 occlusion, no treatment
- Rationale:
 - CTP shows minimal if any hypoperfusion
 - Clinically, patient is near normal
 - If CTP had been abnormal, one would probably have proceeded (misery perfusion)

AIS: Case 4 MR

•Case 4: Assessment Post-IV tPA

Case 4: Conclusions

Rethink your exclusions to IV rt-PA

CTP can aid substantially in treatment decisions and management (if only to reassure you of things)

SMART-TEL: Optimizing Stroke Care Through Telemedicine

Stroke centers provide quality stroke care but have limited reach

Felemedicine

- Well-established mechanism of providing specialized care beyond a hospital's physical confines
- Uses technology to connect patient and physician with a remote specialist:
 - Telephone
 - Teleradiology
 - Videoconferencing
- The use of telemedicine for stroke care, termed 'Telestroke', now typically involves videoconferencing
- Results from the STRokE DOC study demonstrate video conferencing to be superior to telephone consultation in the treatment and management of stroke patients (98% vs 82%, P = 0.0009)
- Potential benefits of Telestroke include improved outcomes, reduced morbidity, and mortality

STRokE DOC = Stroke Team Remote Evaluation Using a Digital Observation Camera. Levine SR, McConnochie KM. *Neurology*. 2007;69:819-820. Meyer BC, et al. *Neurology*. 2005;64:1058-1060. LaMonte MP, et al. *Stroke*. 2003;34:725-728. Meyer BC, et al. *Lancet Neurol*. 2008;7:787-795. Stroke 2009;40;2635-2660

Conclusions

- Hyperacute stroke therapy still time-sensitive, several emerging therapies to expand treatment eligibility
- SMART Criteria may increase eligibility and benefit from IV rt-PA
- Stroke centers with 24/7 care and interventional services effective, telemedicine effective
- Neuroimaging is an important focus of research for acute stroke therapy
- Prevention and early detection are still essential first steps

Additional Slides

STROKE DOC Results

Lancet Neurol 2008; 7: 787–95

SMART: IV <u>not</u> IA Is Preferred Initial Treatment

- Rationale:
 - Time to reperfusion is likely more important than modality of reperfusion
 - IA treatment requires much more time to initiate compared with IV and is generally less available
 - No compelling data that IA is superior to IV, including in large artery occlusion or basilar occlusion
 - IA can always be added to IV (bridging/full dose)
 - IV first may "soften" clot, and make IA more effective
 - No good evidence that higher dose rt-PA causes more bleeding, especially if delayed
 - Data supporting IA thrombolysis is lower quality than that supporting IV

IV vs. IA therapy myths

- IA better than IV due to higher recanalization rate
 - Not been conclusively shown
 - Difficult to make a fair comparison (timing/severity/location)
 - Clinical outcomes may not be significantly different
- IA better >3h
 - ECASS 3 refutes this
- IA better in VB stroke
 - Similar outcomes in meta analysis²
- IA superior if occlusion seen on CTA/MRA/CUS
 - See above, limited evidence
- DWI/PWI identifies good IA candidates
 - DEFUSE/EPITHET show IV rt-PA works in these patients

¹Stroke. 2007;38:2191-2195 ²Stroke. 2006; 37: 922–928.

SUPER SMART

(SUpplementing Perfusion To Enhance Recanalization)

- CPMC Protocol: Full Dose IV+IA rt-PA
- 7/07-6/10: 21 patients received full dose IV+IA
- All patients receive pre treatment CTP/CTA
- Median age 63 (43-94)
- Median NIHSS=15
- Revascularization: 95%
- Mean time to IA: 512 minutes (8.5 hours)
- Discharge mRS \leq 2: 29%
- Symptomatic ICH: 5% (n=1)