Prehospital Stroke Scales: A Balanced Approach

Sunil Bhopale, MD, FACEP Assistant Chief, Emergency Department Kaiser Foundation Hospital, Redwood City October 29th, 2010

Objectives

- Identify: key history and physical exam points when evaluating potential stroke patients
- Review: prehospital stroke scales/screens to evaluate stroke patients
- Understand: the advantages and limitations of prehospital stroke scales/screens
- Discuss: prehospital management of stroke patients

Stroke – Definition

- The <u>sudden</u> death of brain cells in a localized area due to inadequate blood flow
- Ischemic stroke: blood flow is interrupted from a clot (thrombotic or embolic)
- Hemorrhagic stroke: blood flow is interrupted from a leak in a blood vessel

Hemorrhagic Stroke

Hemorrhage/blood leaks into brain tissue

Ischemic Stroke

Clot stops blood supply to an area of the brain

Stroke Happens

3rd leading cause of death in the USA

The leading cause of disability in the USA

One American suffers a stroke *every minute*

One American dies from a stroke every 3.5 minutes

Typical EMS responder sees 4–10 stroke patients/year

Stroke and EMS

- EMS role critical in management of strokes
 - Identification of potential stroke patients
 - Rapid delivery to stroke centers
 - Improved door to MD and door to intervention times
- American Stroke Association, Joint
 Commission, and NAEMSP all emphasize EMS

Acute Stroke Interventions

- Blood pressure, glucose, and temperature control
- IV thrombolysis (t-PA)
- Intra-arterial therapy

- Mechanical thrombectomy (MERCI retrieval)
- Angioplasty and stenting
- Hypothermia

TIME-DEPENDENT

EMS Triage of Stroke

<u>Triage</u>

- The process of sorting victims to determine medical priority in order to increase the number of survivors
- The determination of priorities for action in an emergency

Bottom line: Getting the patient to the appropriate facility for expedited treatment

EMS Triage of Stroke

- Is this patient having a stroke (or mimic)?
 - History, exam, monitor, sugar
- Is it possible to determine stroke severity?
 - Neurological exam
- What treatment can I provide on scene that might make a difference?
 - Positioning, prenotification, rapid transport
- What therapies are available if I take this patient to a stroke center?
 - Benefits and limitations of these therapies

Stroke Mimics

- Todd's paralysis (post-seizure paralysis)
- Sepsis
- Hypo/hyperglycemia 4
- Syncope
- Alcohol/drug abuse
- Intracranial bleeding (epidural/subdural hematomas)
- Migraine
- Bell's Palsy

Stroke Identification

History

- <u>Baseline</u> status
- Time last seen at baseline
- Past medical history (hypertension, diabetes, atrial fibrillation, previous stroke)
- Medications (particularly aspirin, clopidogrel, and warfarin)
- Social history (e.g. alcohol)

Stroke Identification

- Physical Exam
 - Vital signs (heart rate, blood pressure)
 - Level of consciousness
 - Cardiac exam (irregular heart beat)
 - Neurological exam (eye deviation, facial droop, motor deficit, speech deficit)
- On-scene assessment
 - Monitor (atrial fibrillation)
 - Blood sugar

Studied Stroke Scales/Screens

- Cincinnati Prehospital Stroke Scale (CPSS)
- Los Angeles Prehospital Stroke Screen (LAPSS)
- Melbourne Ambulance Stroke Screen (MASS)
- Ontario Prehospital Stroke Screening Tool (OPSS)
- NIHSS and sNIHSS (for EMS)

- Kothari RU et al: Ann Emerg Med, 1999
- Goal: verify reproducibility and validate its ability to identify stroke patients
- Most commonly used stroke scale, including all SF Bay Area counties
- Oldest and most studied scale
- 860 scales completed by 4 EMTs/paramedics and 1 ED physician on 171 patients in the ED and neurology inpatient service
 - 38/171 stroke, 11/171 TIA

- 3 items based on exam only:
 - Facial droop
 - Arm drift
 - Speech impairment

- Excellent reproducibility for prehospital providers for total score and for each item
- Excellent agreement between prehospital providers and physician (individual and total)

	Physicians		Prehospita	l Providers
# of deficits	Sensitivity	Specificity	Sensitivity	Specificity
1	66%	87%	59%	88%
2	26%	95%	27%	96%
3	11%	99%	13%	98%

13 patients had stroke <u>not</u> identified by the CPSS, 10 of whom had a posterior circulation stroke
21/24 patients with anterior circulation stroke had a +CPSS

Frendl DM et al: Stroke, 2009

- Goal: assess impact of routine training and use of CPSS on the accuracy of EMS identification of stroke patients and scene time
- Found that simple EMS training (1 hour) of the CPSS had no impact on the EMS identification of stroke or on scene time
- > 70% of stroke patients had at least one finding
- Sensitivity: 71%, Specificity: 52% out of 154 patients

Advantages:

- Easily learned
- Does not require ALS skills
- Can be performed rapidly
- Results very reproducible
- Disadvantages:
 - Sensitivity and specificity less than desirable
 - Could potentially miss more posterior circulation strokes
 - Does not try to eliminate stroke mimics

LA Prehospital Stroke Screen

- Kidwell CS et al: *Stroke*, 2000
- 3 ALS units near UCLA Medical Center
- 60 minute training session followed by brief certification tape of sample patients
- 206 completed forms/446 patients with neurological complaints (36 target strokes)
 - Age <u>></u> 18
 - Neurologically-relevant complaint
 - No coma
 - No trauma

LAPSS – Goal

- Designed to allow rapidly identification of the most frequent types of strokes
- Also designed to exclude the most common stroke mimics or patients that would not benefit from acute intervention
- Motor skills emphasized: 80-90% of all stroke patients have unilateral motor weakness
- Ratio of nonstroke, neurologically relevant patients to actual stroke patients: 11:1

LAPSS

- Screening criteria (History):
 - Age > 45
 - History of seizures or epilepsy <u>absent</u>
 - Symptom duration < 24 hours
 - At baseline, patient is not wheelchair-bound bedridden

ALL CRITERIA HAVE TO BE YES TO PROCEED

- Test
 - Fingerstick: between 60–400

LAPSS

Exam: Look for OBVIOUS ASYMMETRY

	Normal	Right	Left
Facial Smile/Grimace		o Droop	o Droop
Grip		o Weak grip o No grip	o Weak grip o No grip
Arm Strength		o Drifts down o Falls rapidly	o Drifts down o Falls rapidly

Patient must have only <u>unilateral</u> weakness
 If all criteria from screening, blood sugar, and exam are YES → Stroke Code called

LAPSS - Breakdown of Results

	<u>True strokes excluded</u>	Stroke mimics excluded
Age < 45	0	47
Absence of seizure	0	22
Symptoms> 24 hours	1 (ICH)	10
Baseline wheelchair- bound/bedridden	0	14
Blood glucose 60–400	0	4

LAPSS - Breakdown of Results

- Blood glucose 60–400: no true strokes excluded, 4 potential strokes excluded
- Facial weakness: 2 TIAs identified, 1 stroke
- Grip weakness: 3 strokes identified
- Arm strength: 1 stroke identified
- <u>Bilateral weakness</u> excluded 6 mimics but did eliminate 2 true strokes

Melbourne Ambulance Stroke Screen (MASS)

- Bray JE et al: *CerebrovascDis*, 2005
- CPSS + LAPSS = MASS
- Goal: eliminate stroke mimics and identify suitable patients for thrombolysis
- 18 paramedics: 100 assessments over 12 month period
 - 73% of these assessments were strokes/TIAs
 - 27% of these assessments were stroke mimics
- CPSS, LAPSS also evaluated at the same time

MASS Study – Results

	LAPSS	CPSS	MASS
Sensitivity:	78%	95%	90%
Specificity:	85%	56%	74%

- All patients misidentified by MASS (7 strokes, 7 mimics) were ineligible for thrombolytics
- MASS identified the all patients who required thrombolytics (13)
- No one motor or speech item proved particularly helpful

Ontario Prehospital Stroke Screening Tool (OPSS)

- Chenkin J et al: *PrehospEmerg Care*, 2009
- Goal: determine the positive predictive value (PPV) for the diagnosis of acute stroke
- 325 patients triaged under acute stroke protocol over 12 month period
- PPV was 89.5% for acute stroke
- > 34 patients (11%) had nonstroke conditions
- Rate of t-PA administration for all stroke patients increased from 5.9% to 10.1%

OPSS

- New-onset (one of the following must be present):
 - Unilateral arm/leg weakness or drift
 - Slurred or inappropriate words or mute
 - Facial droop

AND

Can be transported within 2 hours time of onset

OPSS – Contraindications

ANY of the following excludes stroke alert:

- CTAS Level 1 and/or uncorrected airway/breathing/circulation problem
- Resolved symptoms
- Blood sugar < 4 mmol/liter (75 mg/dl)</p>
- Seizure at onset of symptoms or observed by paramedic
- GCS < 10
- Terminally ill/palliative care patient

Comparing Stroke Screens

- Bergs J et al: *Eur Journal Emerg Med*, 2010
- Compared the CPSS, FAST, LAPSS, and MASS in Belgium
- 31 surveys completed/70 neurological complaints (1131 nontraumatic EMS runs)

	Sensitivity	Specificity	PPV
CPSS	95%	33%	69%
LAPSS	74%	83%	88%
MASS	74%	67%	78%

Comparing Stroke Screens

Author	Scale	Sensitivity	Specificity	PPV
Kothari et al	CPSS	59%	88%	
Kidwell et al	LAPSS	91%	97%	86%
Bray et al	CPSS	95%	56%	85%
Bray et al	LAPSS	78%	85%	93%
Bray et al	MASS	90%	74%	90%
Chenkin et al	OPSS			90%

NIHSS & Prehospital Setting

- 15 questions, 42 point scale
- Advantages:
 - The "Gold Standard"
 - Very reproducible between examiners
 - Picks up subtle strokes
 - Prognostic value
- Disadvantages
 - Takes 2-3 hours to learn (for physicians)
 - Takes 5–10 minutes to conduct

- Tirschwell DL et al: *Stroke*, 2002
- Goal: identify the key exam points from the NIHSS that could measure <u>stroke severity</u> and <u>predict outcomes</u>
- Shortened NIHSS (sNIHSS) derived from NIHSS
- Not tested as a tool to identify stroke patients in the first place
- Greatest prognostic factor was leg weakness

sNIHSS-8	sNIHSS-5	
1a. Level of consciousness		
2. Gaze	Х	
3. Visual fields	Х	
4. Facial paresis		
6a. Motor leg - right	X	
6b. Motor leg – left	Х	
9. Language	Х	
10. Dysarthria		

sNIHSS-8 sNIHSS-5 Correlation with NIHSS-15: 0.93 0.88

- Nazliel et al: Stroke, 2008
- Los Angeles Motor Scale (LAMS) 3 items
 - Facial droop (absent=0, present=1)
 - Arm drift (absent=0, drift down=1, rapid fall=2)
 - Grip strength (normal=0, weak=1, none=2)
- Applied to 119 patients with large artery anterior circulation strokes
- Takes 20-30 seconds (no extra time)
- Good interrater reliability
- Predicts final stroke functional outcomes

- Score of > 4: sensitivity 81%, specificity 89%
- Derived from a previously validated screen
- Authors proposed LAMS > 4 with symptoms
 > 3 hours be routed to Comprehensive Stroke Centers
- Limitation: scale done by physicians upon patient arrival to the hospital (not tested in the field)

- Millin MG et al: PrehospEmerg Care, 2007
- Head positioning: zero degrees
 - Intracranial pressure peaks 48 hours after infarct
 - 20% improvement in middle cerebral artery perfusion in flat position vs Fowlers position (30°)
 - Caution with aspiration risk
- Supplemental oxygen: normoxia best
 - Low-flow oxygen unless patient is hypoxic
 - No proven benefit
 - Hyperoxia may be harmful

- IV access: large bore, antecubitalfossa best
 - Optimal for IV contrast
 - Establish en-route to minimize scene time
- IV fluids: run saline TKO if hemodynamically stable
 - No proven benefit of IV fluids
 - Hypertonic saline or D5 worsened infarcts
- ECG monitoring: continuous recommended

- Blood glucose: must check!
 - Hypo/hyperglycemia can cause focal neuro deficits
 - Hypoglycemia (severe or prolonged) = brain injury
 - Hyperglycemia increases stroke morbidity/mortality (increases cerebral edema, promotes hemorrhagic transformation, and worsens postischemic injury)
- Aspirin: theoretically could be given
 - Benefit still present if given within 48 hours
 - 2 problems: hemorrhagic stroke, possible aspiration

- Blood pressure: better to let body autoregulate
 - Cerebral autoregulation often disrupted with ischemia → cerebral perfusion depends on systemic blood pressure
 - Lowering BP within first 24 hours often worsened outcomes
 - For ischemic stroke: SBP 140-180 mm Hg optimal
 - For hemorrhagic stroke: SBP < 130 mm Hg optimal
- Prenotification: Proven helpful
 - Mosley I et al: *Stroke*, 2007; improved hospital arrival time to first MD assessment (10 vs 23 minutes)

Contraindications for IV Thrombolysis in Stroke

- Symptoms > 3 hours (4.5 hours in some cases)
- Seizure with post-ictal residual neuro deficit
- Previous intracranial hemorrhage
- Intracranial surgery or stroke in past 3 months
- Anticoagulated (INR > 1.5)
- Spontaneous improvement of neuro deficit
- Serum glucose < 50 or > 400
- Relative warnings: age > 77 or massive stroke

t-PA given 5-15% in Emergency Departments

Suggested Stroke Screen Criteria to Divert to a Stroke Center

- Transport to stroke center < 3.5 hours</p>
- No witnessed seizures or history of seizures
- Not wheelchair-bound/bedridden at baseline
- Not comatose or only responsive to painful stimuli
- Glucose 60–400
- One of the following must be present: facial droop, impaired speech, arm drift, leg drift

Conclusions

- Diagnosis often difficult
- Use all tools to evaluate patients
 - History (time of onset, medications, risk factors)
 - Neurological exam (level of consciousness, speech, eye deviation, facial droop, arm/leg weakness)
 - Monitor, blood sugar
- Treatment: positioning, oxygen, IV access
- Be familiar with contraindications for thrombolysis
 - American Stroke Association supports EMS screening

Contact Information

Sunil Bhopale, MD, FACEP sunil.bhopale@kp.org (650) 299-3683

Kaiser Foundation Hospital 1150 Veterans Blvd. Redwood City, CA 94063

